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José A. Dı́az-Garćıa
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Department of Probability and Statistics

Jalisco S/N, Mineral de Valenciana
36240 Guanajuato, Guanajuato, México.
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E-mail: alvarado@cimat.mx

Abstract

Based on a multivariate linear regression model, we propose several generalizations to the
multivariate classical and modified Cook’s distances in order to detect one or more of influential
observations including the case of linear transformations of the estimated regression parameter.
For those distances, we derived the exact distributions and point out a method to extend the
calculation of exact distributions for several other metrics available in the literature, for the
univariate and multivariate cases. The results are extended to elliptical families not under the
assumption of normality. An application is described in order to exemplify the methodology.
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1 Introduction

Sensitivity analysis in linear models, under normality assumptions has been deeply stud-
ied in the statistical literature since the seminal work of Cook (1977) and many more
like Belsey et al. (1980), Cook and Weisberg (1982), and Chatterjee and Hadi (1988),
among others. The research in this area has been extended to deal with several particular
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regression models, like in Galea et al. (1997), Dı́az-Garćıa et al. (2003) or Dı́az-Garćıa
and González- Faŕıas (2004) but one common factor for most of the techniques deal-
ing with detection of influential observation in linear regression models, is the so called
Cook’s distance. The work of Muller and Mok (1997) and Jensen and Ramirez (1997)
have derived the exact distribution for the Cook’s distance on univariate linear models
either with fixed or random coefficients. For the multivariate case, there exists a pro-
posed expression for the exact distribution of the Cook’s distance, see Dı́az-Garćıa et al.
(2003).

In many instances when we are dealing with a regression model, it is not only of
interest to study the sensitivity of the parameters β, but some particular transformations
that reflect hypothesis of interest for the researchers. Most of these transformations are
basically expressed as linear transformations of the parameters of the form NβM, where
N and M are constant matrices of the appropriate orders, see Caroni (1987) and Dı́az-
Garćıa and González- Faŕıas (2004). It would be beneficial to study the sensitivity of
transformation of a most general kind, for example, linear applications of the form NβM.
One particular case would be if we consider the effect of outliers for the kr-th element of
βkr from β. However, the most common cases we found on the literature are comparisons
among the rows of β, of the form Nβ; that is, we are interested on comparing the effects
of the proposed model with each characteristic or linear applications in the form βM;
for which we are making comparison among the columns of β, and therefore comparison
of the same effect for all the characteristics under the study.

In this paper we propose some generalizations in the multivariate context for the
classical and the modified Cook’s distances when we eliminate one or several observations,
deriving the exact distributions. In the same way, we study the effect of eliminating one
or several observations on the estimation of linear functions of the parameter regression
matrix. In such case, we propose an extension of the classical and modified Cook’s
distance (Dı́az-Garćıa et al., 2003), as well as, the modified distances given in Dı́az-Garćıa
and González- Faŕıas (2004). For all the cases we derived the exact distribution. We also
extend all those results when the normality assumption is dropped considering instead,
the family of elliptical distributions. We applied these results to a diet problem discussed
in Srivastava and Carter (1983), and illustrate some of the linear transformations of the
form βM.

2 Multivariate Elliptical Linear Regression Model

As we can see in the statistical literature, the elliptical family of distributions has received
a lot of attention during the last 20 years, given the fact that many properties that belong
to the multivariate normal distribution are either invariant or can be extended, in a very
natural way, to the elliptical family. Some references in this line are Fang and Anderson
(1990), Fang and Zhang (1990), Gupta and Varga (1993), Dı́az-Garćıa et al. (2002),
among many others.

In this section we provide some basic notation and results in the context of linear
models that allow us to derive the corresponding distances and their distributions for
sections 3 and 4.

We say that an n × p random matrix Y = (Y1, ...,Yp)
′ has an elliptical distribution

with parameters µ ∈ <n×p the location matrix and Σ ⊗ Φ ∈ <np×np the scala matrix,
Σ > 0 and Φ > 0, with Σ ∈ <p×p and Φ ∈ <n×n, if its density function is given by

fY(Y) = |Σ|−n/2|Φ|−p/2g
{
tr

(
Σ−1(Y − µ)′Φ−1(Y − µ)

)}
, (1)
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where the function g : < → [0,∞) is such that
∫ ∞

0
unp/2−1g(u)du < ∞ and ⊗ denotes

the usual Kronecker product. The function g is called the density generator and write
Y ∼ E ln×p(µ,Σ⊗Φ; g). When it exists, we have that E(Y) = µ and Var(Y) = cgΣ⊗Φ,
where cg is a constant positive. In the case where µ = 0 and Σ ⊗ Φ = Inp, we obtain
the spherical family of densities. These class of distributions include Normal, t-Student,
Contaminated Normal, Bessel and Kotz, among other distributions.

Consider the multivariate linear regression model,

Y = Xβ + ε (2)

where Y ∈ <n×p is the observed matrix, X ∈ <n×q the regression matrix of rank
q, β ∈ <q×p the parameter regression matrix and ε ∈ <n×p the error matrix with
distribution given by E ln×p(µ,Σ ⊗ In; g), where Σ > 0 is the scale matrix of dimension
p × p and the density of Y is given in (1), with µ = Xβ. If g is a continuing and
decreasing function the maximum likelihood estimators of β and Σ are given by,

β̂ = (X′X)X′Y = X−Y (3)

Σ̂ = u0(Y − Xβ̂)′(Y − Xβ̂) (4)

where A− is the Moore-Penrose inverse of A and u0 maximize the function h(u) =
u−np/2g(p/u), u ≥ 0. More over, by Gupta and Varga (1993, Theorem 2.1.2 p. 20) we
have,

β̂ ∼ E lq×p(β,Σ ⊗ (X′X)
−1

; g). (5)

Finally, if we defined S = Σ̂/(u0(n − q)), we get E(S) = Σ.

3 Detecting an Influential Observation

We will establish all the results under the assumption that ε has a matrix normal distri-
bution, noticing that, u0 = 1/n. At the end of the section we will extend the result for
the elliptical case.

3.1 Classical Cook’s distance

Consider the general multivariate linear model which is obtained from (2) by deleting the
i-th row of Y, X and ε. That is, by deleting i-th observation and getting the matrices
Y(i), X(i) and ε(i), respectively.

For the modified model, the maximum likelihood estimators for β and Σ are given
by,

i) β̂(i) = (X′
(i)X(i))

−1X′
(i)Y(i) = X−

(i)Y(i) and

ii) Σ̂(i) =
1

n
(Y(i) − X(i)β̂(i))

′(Y(i) − X(i)β̂(i))

Dı́az-Garćıa et al. (2003) proposed a multivariate version for the Cook distance to
study the sensitivity of the regression parameters given by,

Di =
1

q
vec′

(
(β̂ − β̂(i))

)
Ĉov

(
vec(β̂)

)−1

vec
(
(β̂ − β̂(i))

)
. (6)

Note that Cov
(
vec(β̂)

)
= Σ ⊗ (X′X)−1 and given that

tr(BX′CXD) = vec′(X)(B′D′ ⊗ C) vec(X) (7)
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for matrices of appropriate orders, (6) can be written as

Di =
1

q
tr

(
β̂ − β̂(i)

)′

(X′X)
(
β̂ − β̂(i)

)
S−1 (8)

but

β̂ − β̂(i) =
(X′X)−1Xiε̂

′
i

1 − hii
, (9)

where Xi is the i-th row of the matrix X, hii = X′
i(X

′X)−1Xi is the i-th diagonal ele-
ment of the orthogonal projector H = XX− = X(X′X)−1X′ (also called the prediction

matrix), ε̂ = (Y−Xβ̂) = (I−H)Y and ε̂
′
i = en

i
′(Y−Xβ̂) = H′

iY, with en
i being the i-th

canonical vector from <n, see Chatterjee and Hadi (1988) and Dı́az-Garćıa and González-
Faŕıas (2004). Therefore, substituting (9) in (8) and applying some trace properties

Di =
1

q(1 − hii)2
ε̂
′
iS

−1ε̂iX
′
i(X

′X)−1Xi (10)

=
hii

q(1 − hii)
R2

i (11)

where R2
i = ε̂

′
iS

−1ε̂i/(1−hii) is the square norm of the multivariate internal studentized
residual. Now, since it is known (see Caroni (1987)) that R2

i /(n−q) ∼ β(q/2, (n−q−p)/2)
where β(q/2, (n − q − p)/2) denote a central Beta distribution with parameters q/2 and
(n − q − p)/2 it follows that,

q(1 − hii)Di

hii(n − q)
=

R2
i

(n − q)
∼ β(p/2, (n − q − p)/2) (12)

or, Di ∼ Ciβ(p/2, (n − q − p)/2), where

Ci = hii(n − q)/(q(1 − hii)) (13)

The distribution of Di, in the univariate case has been studied by Muller and Mok (1997).
More over, following the suggestion from Chatterjee and Hadi (1988, p. 124) and Dı́az-
Garćıa and González- Faŕıas (2004), that is, if instead of S we use S(i), obtain after
eliminating the i-th observation and we denote Di by D∗

i , then,

D∗
i =

1

q(1 − hii)2
ε̂
′
iS

−1
(i) ε̂iX

′
i(X

′X)−1Xi (14)

=
hii

q(1 − hii)
T 2

i , (15)

where T 2
i = ε̂

′
iS

−1
(i) ε̂i/(1−hii) is the squared norm of the multivariate externally studen-

tized residual, with
(n − q − p)T 2

i

p(n − q − 1)
∼ Fp,(n−q−p).

where Fp,(n−q−p) denote a central F distribution with parameters p and (n− q − p), see
(see Caroni, 1987). Therefore, D∗

i ∼ EiFp,(n−q−p), where

Ei =
hiip(n − q − 1)

q(1 − hii)(n − q − p)
. (16)

The same result but only for the univariate case, can be found in Jensen and Ramirez
(1997), although their proof follows a rather different approach.

We summarize the above results in the following theorem.

4



Theorem 1. Consider the general multivariate model (2) and definitions Di and D∗
i

given in (11) and (15), respectively. Suppose that ε ∼ Nn×p(0,Σ ⊗ In), then,

i)
Di ∼ Ciβ(p/2, (n − q − p)/2), (17)

where β(p/2, (n − q − p)/2) denote a central beta distribution with parameters p/2
and (n − q − p)/2 and Ci as given in (13).

ii)
D∗

i ∼ EiFp,(n−q−p), (18)

where Ei defined in (16) and F(p, n − q − p) denote a central F distribution with p and
(n − q − p) degrees of freedom.

Note that all the multivariate Cook’s distances defined here can be easily extended to
study the sensitivity of linear functions of the parameters NβM, in the following way.
Let

Di =
1

l
vec′

(
N(β̂ − β̂(i))M

)
Ĉov

(
vec(Nβ̂M)

)
−1

vec
(
N(β̂ − β̂(i))M

)
(19)

where N ∈ <l×q and M ∈ <p×s, are non random matrices (matrices of constants) of
rank l and s, respectively. Observe that

Ĉov
(
vec

(
N(β̂)M

))−1

= M−S−1M′− ⊗ N′−X′XN−,

and
vec

(
N

(
β̂ − β̂(i)

)
M

)
= (M′ ⊗ N) vec

(
β̂ − β̂(i)

)
,

and following the same type of arguments than before, (see equation (10)),

Di =
1

l
trMM−S−1MM−(β̂ − β̂(i))

′N−NX′XN−N(β̂ − β̂(i)) (20)

=
h∗

ii

l(1 − hii)
R2

i (21)

where h∗
ii = X′

i(X
′X)−1N−N(X′X)N−N(X′X)−1Xi, and

R2
i =

{
ε̂
′
iS

−
1 ε̂i/(1 − hii), S−

1 = MM−S−1MM− ∈ <p×p of rank s ≤ p;

ε̂
∗′

i S−1ε̂
∗
i /(1 − hii), with ε̂

∗
i = MM−ε̂i.

Theses alternative expressions for R2
i allows us to establish the exact distribution under

either one of the following assumptions, S1 has a singular central Wishart distribution or
ε̂
∗
i follows a singular multivariate normal distribution, see Eaton (1983) or Dı́az-Garćıa

and Gutiérrez-Jáimez (1997).
In this context we also may substitute, S by S(i), and redefine D∗

i . So, we get the
following result.

Theorem 2. Consider the general multivariate linear model (2) and definitions Di and
D∗

i . Suppose that ε ∼ Nn×p(0,Σ⊗ In), and given the parametric linear functions NβM
we have,

i)
Di ∼ Ciβ(s/2, (n − l − s)/2), (22)

where β(s/2, (n − l − s)/2) denote a central beta distribution with parameters s/2
and (n − l − s)/2 and Ci = h∗

ii(n − l)/(l(1 − hii)).
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ii)
D∗

i ∼ EiFs,(n−l−s), (23)

where Ei = sh∗
ii(n − l − 1)/(l(1 − hii)(n − l − s)) as defined in (16) and F(s, n − l − s)

denote a central F distributions with p and (n − l − s) degrees of freedom.

3.2 Modified Cook’s distance

The modified Cook’s distance for sensitivity analysis of the matrix estimator of pa-
rameters β, has been deeply studied in Dı́az-Garćıa and González- Faŕıas (2004). The
objective of this section is to extend those results for sensitivity analysis of linear func-
tions of the form NβM. So, we first propose a similar modification to that given in
Dı́az-Garćıa and González- Faŕıas (2004), called ACiand define it as,

ACi = vec′(N(β̂ − β̂(i))M)Ĉov
(
vec(N(β̂ − β̂(i))M)

)
−

vec(N(β̂ − β̂(i))M). (24)

In order to obtain an explicit expression for ACi, just note that

Ĉov
(
vec(N(β̂ − β̂(i))M)

)
= (M′ ⊗ N)Ĉov

(
vec(β̂ − β̂(i))

)
(M ⊗ N′)

Besides, and using similar arguments as those given in Dı́az-Garćıa and González-
Faŕıas (2004)

vec(β̂ − β̂(i)) =
(Ip ⊗ (X′X)−1XiH

′
i)

1 − hii
vec(Y), (25)

Cov (vec(β̂ − β̂(i))) =
S ⊗ (X′X)−1XiX

′
i(X

′X)−1

(1 − hii)
, (26)

where H′
i = en

i
′(I − H) is the i-th row of the matrix (I − H) and en

i being the i-th
vector for a canonical base in <n. Then,

vec(N(β̂ − β̂(i))M) =

(
M′ ⊗ N(X′X)−1XiH

′
i

)

1 − hii
vec(Y), (27)

and

Ĉov
(
vec(N(β̂ − β̂(i))M)

)
=

M′SM ⊗ N(X′X)−1XiX
′
i(X

′X)−1N′

1 − hii
. (28)

Now, let us denote vi = N(X′X)−1Xi, vi ∈ <l, then

(
Ĉov

(
vec(N(β̂ − β̂(i))M)

))−

=

(
M′SM ⊗ viv

′
i

1 − hii

)−

=
1 − hii

‖vi‖4
((M′SM)−1 ⊗ viv

′
i).

Therefore the modified Cook’s distance, ACi, can be written as,

ACi = vec′(N(β̂ − β̂(i))M)
(
Ĉov

(
vec(N(β̂ − β̂(i))M)

))
−

vec(N(β̂ − β̂(i))M)

=

(
(M′ ⊗ viH

′

i)

1 − hii

vec(Y)

)
′

(1 − hii)((M
′
SM)−1 ⊗ viv

′

i)

‖vi‖4

(
(M′ ⊗ viH

′

i)

1 − hii

vec(Y)

)

= (1 − hii)
−1 vec′(Y)(M(M′

SM)−1
M

′ ⊗ HiH
′

i) vec(Y). (29)
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Given (7), ACi may be written as

ACi = (1 − hii)
−1 tr(M(M′SM)−1M′Y′HiH

′
iY).

But, ε̂
′
i = en

i
′(Y − Xβ̂) = P′

iY, then,

ACi = (1 − hii)
−1 tr(M(M′SM)−1M′ε̂iε̂

′
i)

= (1 − hii)
−1(M′ε̂i)

′(M′SM)−1(M′ε̂i).

As for the classical Cook’s distance case, it is also possible to replace the estimator S of
Σ by the estimator S(i), obtained from the reduced sample, and get a modified Cook’s
distance that will denote as AC∗

i .
The exact distributions for ACi and AC∗

i , are given on the following result.

Theorem 3. Consider the general linear multivariate ] model (2) and the definitions of
ACi and AC∗

i . Suppose that, ε ∼ Nn×p(0,Σ⊗ In) and given the matrices N ∈ <l×q and
M ∈ <p×s, of rank l and s respectively, we have

i)
ACi

n − q
∼ β(s/2, (n − q − s)/2), (30)

where β(s/2, (n − q − s)/2) denote a central beta distribution with parameters s/2
and (n − q − s)/2.

ii)
(n − q − s)AC∗

i

s(n − q − 1)
∼ F(s, n − q − s), (31)

where F(s, n − q − s) denote a central F distribution with s and (n − q − s) degrees of
freedom.

Proof. It follows immediately from Caroni (1987) and Dı́az-Garćıa and González- Faŕıas
(2004).

4 Detecting a set of influential observations

Let I = {i1, i2, ..., ik} a set of size k of {1, 2, ..n}, such that (n − k) ≥ q. Now, with
respect to the model (2) denote X(I), Y(I) and ε(I) the regression, data and error ma-
trices respectively, after deleting the corresponding observations in accordance with the
subindexes given in I. Let β̂(I) and Σ̂(I) be the corresponding maximum likelihood esti-
mators for the general multivariate linear model after eliminating the set of observation
in I.

As for the other case, it can be verified, see Chatterjee and Hadi (1988) and Dı́az-
Garćıa and González- Faŕıas (2004), that

β̂ − β̂(I) = (X′X)−1XI(Ik − HI)
−1ε̂I . (32)

where HI = X′
I(X

′X)−1XI , with XI as the regression matrix , and ε̂I = U′
I(I − H)Y,

with UI = (en
i1

, en
i2

, ..., en
i2

).
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4.1 Classical Cook’s distance

In this case, a generalization of the classical Cook’s distance for a multivariate linear
model can be written as

DI =
1

k
vec′

(
(β̂ − β̂(I))

)
Ĉov

(
vec(β̂)

)−1

vec
(
(β̂ − β̂(I))

)
. (33)

Given (32) and applying properties for the trace operator vec can be re-expressed (33)
as

DI =
1

k
tr ε̂IS

−1ε̂
′
I(Ik − HI)

−1HI(Ik − HI)
−1 (34)

Again, (34), S may be substitute by S(I), calculated from the reduce sample, to get
the modified Cook’s distance that it is denoted by D∗

I .
Assuming that k < p (this will be enough since the distributions when k ≥ p, can be

derived from the case k < p, see Muirhead (1982, p. 455)), of Dı́az-Garćıa and González-
Faŕıas (2004) it is known that,

B = (Ik − HI)
−1/2ε̂I((n − q)S)−1ε̂

′
I(Ik − HI)

−1/2

F = (Ik − HI)
−1/2ε̂I((n − q − k)S(I))

−1ε̂
′
I(Ik − HI)

−1/2

has a matric variate type Beta and matric variate F distributions respectively; also called
matrix variate beta type I and matrix variate beta type II distribution, respectively, see

Gupta and Nagar (2000, pp. 165-166). Let A1/2 = H
1/2
I (Ik −HI)

−1/2 then the matrices

A1/2BA′1/2

A1/2FA′1/2

have a generalized matrix variate beta type I and a generalized matrix variate beta type
II distribution, respectively, see Gupta and Nagar (2000, p. 175). Then,

k DI

(n − q)
= trA1/2BA′1/2

and
k D∗

I

(n − q − k)
= trA1/2FA′1/2

We have summarized those results in Theorem 4.

Theorem 4. Consider the general multivariate linear model (2) and definitions DI and
D∗

I . Suppose that ε ∼ Nn×p(0,Σ ⊗ In), then,

k DI

(n − q)
and

k D∗
I

(n − q − k)
,

have the distribution of the trace of a generalized matrix variate beta type I and a gener-
alized matrix variate beta type II distribution, respectively. That is, they have the distri-
butions of the Pillai and Lawley-Hotelling statistics base on the generalized versions of
the betas type I and II, respectively.

Unfortunately, distributions given in Theorem 4 have not yet been tabulated.
One way to circumvent this fact and give a solution to our problem, is proposing an

alternative metric for (34), similar to those given in Dı́az-Garćıa and González- Faŕıas
(2004, see Table 1). In such a way that the distributions of DI and D∗

I can be expressed
as functions of the distribution for the matrices B and F.
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Let us delete the denominator k and consider the metric base on determinants instead
of traces in (34), we get the following variant of the Cook distance

DMI =
|HI |

|Ik − HI |

∣∣∣∣
1

(n − q)
S−1ε̂

′
I(Ik − HI)

−1ε̂I

∣∣∣∣
−1

=
|HI |

|Ik − HI |
S − criterion. (35)

Where the S-criterion is due to Ch. L. Olson, see Kres (1983, p. 8).
Similarly, deleting the denominator k, taking as a metric the inverse of the determi-

nant in (34) considering S(I), we get this other variant for the Cook distance

DM∗
I =

|Ik − HI |

|HI |

∣∣∣∣
1

(n − q − k)
S−1

(I)ε̂
′
I(Ik − HI)

−1ε̂I

∣∣∣∣

=
|Ik − HI |

|HI |
U − criterion. (36)

The U -criterion has been credited to Gnanadesikan in Kres (1983, p. 8) and Olson
(1974), perhaps because it was thought to have been introduced in Roy et al. (1971, p.
72). However this statistic is none other than the U -statistic of Wilks given in Wilks
(1932) and in Hsu (1940). Hsu even gives the distribution of the latter for p = 2.
Unfortunately, in Kres (1983, p. 6), the expression for the U -statistic of Wilks as a
function of the eigenvalues was given incorrectly, and perhaps this explains why it was
not clear that this statistic and the one of Gnanadesikan, (presented also in Kres (1983,
p. 8)), are in fact the same. Here we provide the correct representation for the U -statistic
of Wilks and show that it is equivalent to the U -criterion of Gnanadesikan.

Consider the expression for the Λ of Wilks statistic and the U -criterion as functions
of the eigenvalues like given in Seber (1984, pp. 412 and 413, respectively)

Λ =

w∏

i=1

(1 − θi) and U =

w∏

i=1

θi,

where H and E are the sum of squared and product matrices for the hypothesis and
the error respectively, w being the rank and Θ = (θ1, . . . , θw)′ the no-zero eigenvalues
of the matrix H(H + E)−1, such that 1 > θ1 ≥ · · · ≥ θw > 0. Denote the density of Θ
by p(Θ, w,m1,m2), where m1 and m2 are functions of n, p, q, defined in Section 2, see
Muirhead (1982, pp. 451 and 454-455) or Dı́az-Garćıa and Gutiérrez-Jáimez (1997).

Now, it is known that Λ ∼ Wilks’s Λ. If Θ∗ = ((1 − θ1), . . . , (1 − θw))
′
= (θ∗1 , . . . , θ∗w)′,

the distribution of Θ∗is the same as that of Θ, interchanging m1 and m2. Then,

Λ∗ =
w∏

i=1

θ∗i ∼ Wilks’s Λ, with m1 and m2 interchanged

but note that Λ∗ = U . Therefore,

U ∼ Wilks’s Λ, with m1 and m2 interchanged

In summary, the critical value for the U -criterion, can be obtained from the tables
for the statistics Λ of Wilks interchanging m1 and m2.

Theorem 6 summarizes the above results.
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Theorem 5. Consider the general multivariate linear model (2) and definitions DMI

and DM∗
I . Suppose that ε ∼ Nn×p(0,Σ ⊗ In),

|Ik − HI |

|HI |
DMI and

|HI |

|Ik − HI |
DM∗

I ,

have the S-criterion distribution and U -criterion distribution respectively.

For the linear application case, NβM the distances DMI and DM∗
I are obtained

simply making the following changes

HI → H∗
I = X′

I(X
′X)−1N−N(X′X)N−N(X′X)−1XI

S−1 → S−
1 = MM−S−1MM−

and their corresponding distributions, change the parameters

q → l and p → s

to obtain the correct percentile.

4.2 The modified Cook’s distance

The modified Cook distance for several influential observations for the estimated regres-
sion parameter matrix β was also studied in Dı́az-Garćıa and González- Faŕıas (2004).
Here again, we present the direct extension for linear transformations of the form NβM.
Denote the modified Cook’s distance as ACI and define it in the following way,

ACI = vec′(N(β̂ − β̂(I))M)Ĉov
(
vec(N(β̂ − β̂(I))M)

)
−

vec(N(β̂ − β̂(I))M), (37)

whereN ∈ <l×q and M ∈ <p×s, with rank l and s, respectively. Working in the same
way as before and following Dı́az-Garćıa and González- Faŕıas (2004) we get that ACI

can be written as

ACI = vec′(β̂ − β̂(I))
(
M((M′SM))−1M′ ⊗ N′(NRN′)−N

)
vec(β̂ − β̂(I)),

where R = (X′X)−1XI(Ik − HI)
−1X′

I(X
′X)−1.

Due to (7), ACi we get

ACI = tr(M′

SM)−1
(
N(β̂ − β̂(I))M

)
′

(NRN
′)−

(
N(β̂ − β̂(I))M

)
. (38)

But N(β̂ − β̂(I))M = N(X′X)−1XI(Ik − HI)
−1ε̂IM, therefore

(
N(β̂ − β̂(I))M

)′

(NRN′)−
(
N(β̂ − β̂(I))M

)

= M′ε̂
′
I(Ik − HI)

−1X′
IX

′
I
−

(Ik − HI)X
−
I XI(Ik − HI)

−1ε̂IM.

Note that if N ∈ <l×q, of rank l and

(X′X)−1N′N′−(X′X) =
(
N

′−(X′X)
)− (

N
′−(X′X)

)
= Il

then,

(
N(β̂ − β̂(I))M

)′

(NRN′)−
(
N(β̂ − β̂(I))M

)
= M′ε̂

′
I(Ik − HI)

−1ε̂IM.
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and ACI can be finally written as

ACI = tr((M′SM)−1M′ε̂
′
I(Ik − HI)

−1ε̂IM. (39)

Of course we can replace S, the estimator of Σ, by S(I), obtain from the reduced
sample after deleting the k observations. In that case we denote the modified Cook’s
distance as AC∗

I .
For the case of multiple observations, the exact distributions of ACI and AC∗

I , are
given in the following result.

Theorem 6. Consider the general multivariate linear model (2) and the definitions ACI

and AC∗
I . Suppose that ε ∼ Nn×p(0,Σ⊗ In) and considering the matrices N ∈ <l×q and

M ∈ <p×s, of rank l and s, respectively, we have

i)
ACI

n − q
∼ P(w,m, h), (40)

where P(w,m, h) denote the central distribution for the Pillai’s statistics, with pa-
rameters w, m, and h, see Seber (1984) or Rencher (1995).

ii)
AC∗

I

n − q − k
∼ LH(w,m, h), (41)

whereLH(w,m, h) denote the central distribution of the Lawley-Hotelling’s statistic
with parameters w, m, and h, see see Seber (1984) or Rencher (1995).

In both cases the parameters are defined as w = min(s, k), m = (|s − k| − 1)/2 and
h = (n − q − s − 1)/2.

Proof. It follows directly from Dı́az-Garćıa and González- Faŕıas (2004).
A very important observation here is that if we look at several of the metrics that have

been proposed in the study of sensitivity of the parameter estimates of the linear model
β or Σ, such as: the Cook’s distance, Welsh’s distance, methods based on volumes, and
methods based on the likelihood function, among many others, (see Chatterjee and Hadi
(1988)), those can be written as a function of the internally studentized residual or ex-
ternally studentized residual, either in the univariate or the multivariate case. Moreover,
we can write all those statistics as

Metric = GR

where R denote the squared norm of some of those type of the residuals and G is a
constant. Then Metric/G has the same distribution as R. Therefore all the distributions
of the metrics, in general, coincide with some of the distributions for the metrics given
in Dı́az-Garćıa and González- Faŕıas (2004). Which means that, we are able to establish
the exact distribution, for the univariate as well as for the multivariate case, of all those
metrics.

If we now assume that ε ∼ E ln×p(0,Σ ⊗ In; g) as an immediate consequence of
Theorem 5.3.1 in Gupta and Varga (1993, p. 182) the distributions associated with
each of the distances defined in Theorem 1 through 8, are invariant under the family
of elliptical distributions. Therefore, the extension of the sensitivity analysis of linear
applications of the form NβM and β follow the general multivariate linear model with
elliptical errors.

Now, if we look at the exact distribution and the proposed metrics for the modified
Cook’s distance, we note that neither one depend on the matrix N, not even any of
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its properties like its rank or its dimensions. The researchers should be aware that the
distances proposed to study the effect of the estimation of those linear applications (
NβM), are not taking into account the effect of N. Therefore, those distances are in
principle measuring the sensitivity for the estimation of linear applications of the form
βM.

The same comments extend to the classical Cook distance since even when the metrics
depend on N through de h∗

ii or H∗
I , for the case of one or several influential observations,

when we calculate their exact distributions, such effect vanishes so at the end it is only
possible to detect effects for the sensitivity of liner applications of the form βM. We
illustrate this type of linear transformation in the following section.

5 Application

Consider the quantity of the food ingested by 32 rats, previously assigned into groups
of 4, for about 12 days. The diet consists of a treatment containing different levels of
phosphate, see Srivastava and Carter (1983) or Srivastava (2002).

The model to consider is

yi = β0i + β1ix + β2ix
2 + β3ix

3 + β4iw + εi i = 1, ..., 12

where x represents the quantity of phosphate given and w is the covariable initial weight
of the rats.

In matrix notation,
Y = Xβ + ε,

where Y ∈ <32×12, is the response matrix, with n = 32 and yij = the quantity of food
consumed by the rat i on the day j; X ∈ <n×5 is the matrix of covariables, the first
column is formed by corresponding intercepts, columns 2, 3 and 4 correspond to x, x2

and x3, respectively and the last column corresponds to w; and finally, β ∈ <5×12,

β =




β01 β02 · · · β012

β11 β12 · · · β112

...
...

. . .
...

β41 β42 · · · β412


 ,

is the matrix of parameters with vectors corresponding to the intercepts, x, x2, x3 and
w respectively.

Suppose you are interested in the following linear applications,



β01 − (β03 + β04) β02 − β04 β03 − β05

β11 − (β13 + β14) β12 − β14 β13 − β15

β21 − (β23 + β24) β22 − β24 β23 − β25

β31 − (β33 + β34) β32 − β34 β33 − β35

β41 − (β43 + β44) β42 − β44 β43 − β45




, (42)

Where, for example, for column 1, we have the following interpretation: in the first
function one is interested in contrasting the quantity of food consumed in day 1 and
the total food consumed in days 3 and 4; the second function establishes the effect in
the quantity of phosphate in day 1, being the same as the sum for the linear effect on
days 3 and 4; the third function establishes that the quadratic effect of the amount of
phosphate in day 1 is the same as the quadratic effect of days 3 and 4, the fourth function
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establishes the the cubic effect of the amount of phosphate on day one is the same as the
sum of the cubic effects on days 3 and 4; and finally the fifth linear function establishes
the effect of the initial weight on day one as being the same as the sum of the effects of
the initial weight of days 3 and 4. Columns 2 and 3 in (42) are interpreted in a similar
fashion.

Note that (42)can be expressed βM , with

M
′ =




1 0 −1 −1 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0 0 0
0 0 1 0 −1 0 0 0 0 0 0 0


 .

Then, it would be of interest to see if any individual or group of observations is influential
on the estimator of the linear functions given in (42).

The figure 1 show the distances ACi and AC∗
i , which are useful in detecting the

influence of the i-th observation in the linear combination β̂M. The results of the tests
allow us to identify the observations 16, 17, 20 and 26 with as having a strong individual
influence over β̂M.

a)Outlier Distance: AC Distance

Observation Number

Di
sta

nc
e

0.0
0.1

0.2
0.3

0.4

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32

Critical Value = 0.273 form a Beta(0.95,3/2,24/2)

b) Outlier Distance: AC* Distance

Observation Number

Di
sta

nc
e

0
1

2
3

4
5

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32

Critical Value = 3.009 from a F(0.95,3,24)

Figure 1: Identification of influential observations, based on a) the distance ACi and b) the distance AC∗

i .

Now, it is necessary to evaluate if the observations 16, 17, 20 and 26, as a group,
have influence in the parametric functions β̂M. Then, using the metrics proposed in the
theorem 6 we obtained the results described in Table 1.

In the four cases the test statistics are greater than the corresponding critical value
α, consequently, both tests can identify the observations 16, 17, 20 and 26 as jointly
influential in the linear combination β̂M .
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Table 1: Four metrics to detect an influential set of observations in linear combinations β̂M .

Metric Statistica α Critical value
ACI = 1.2532 4.8430 b 1.8737
AC∗

I = 2.5209 4.9718 c 1.8912
|Ik−HI |
|HI |

DMI = 33.8781 33.8781 not available
|HI |

|Ik−HI |
DM∗

I = 0.0477 0.0477 0.000587d

aObserve that for four tests, the decision rule is: statistics ≥ critical value
bUsing an approximate F-statistics, see equation (6.20) in Rencher (1995, p.185, 1995)
cUsing an F approximation, see equation (6.24) in Rencher (1995, p.185, 1995)
dIn our example, p → s then m1 = (|s − k| − 1)/2 and m2 = (n − q − s − 1)/2.
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